Whole Grains Can Cause Tooth Decay

Some people are having problems with "whole" grains and nuts. Just because a grain is whole, does not mean it is good for you.

I recommend grains that you regularly consume be soured first. Sour whole grains still cause tooth decay for people. This is because typically grains require multiple processing steps. Fresh grinding, sifting to remove most of the bran and germ, and then souring. Do not consume oatmeal, due to its phytic acid content, and do not consume large amounts of nuts due to their anti-nutrients.

Living With Phytic Acid, Article Published IN Wise Traditions 2010 by Ramiel Nagel

Preparing Grains, Nuts, Seeds and Beans for Maximum Nutrition

Phytic acid in grains, nuts, seeds and beans represents a serious problem in our diets. This problem exists because we have lost touch with our ancestral heritage of food preparation. Instead we listen to food gurus and ivory tower theorists who promote the consumption of raw and unprocessed "whole foods;" or, we eat a lot of high-phytate foods like commercial whole wheat bread and all-bran breakfast cereals. But raw is definitely not Nature's way for grains, nuts, seeds and beans. . . and even some tubers, like yams; nor are quick cooking or rapid heat processes like extrusion.

Phytic acid is the principal storage form of phosphorus in many plant tissues, especially the bran portion of grains and other seeds. It contains the mineral phosphorus tightly bound in a snowflake-like molecule. In humans and animals with one stomach, the phosphorus is not readily bioavailable. In addition to blocking phosphorus availability, the "arms" of the phytic acid molecule readily bind with other minerals, such as calcium, magnesium, iron and zinc, making them unavailable as well. In this form, the compound is referred to as phytate.

Phytic acid not only grabs on to or chelates important minerals, but also inhibits enzymes that we need to digest our food, including pepsin,1 needed for the breakdown of proteins in the stomach, and amylase,2 needed for the breakdown of starch into sugar. Trypsin, needed for protein digestion in the small intestine, is also inhibited by phytates.3

Through observation I have witnessed the powerful anti-nutritional effects of a diet high in phytate-rich grains on my family members, with many health problems as a result, including tooth decay, nutrient deficiencies, lack of appetite and digestive problems.

The presence of phytic acid in so many enjoyable foods we regularly consume makes it imperative that we know how to prepare these foods to neutralize phytic acid content as much as possible, and also to consume them in the context of a diet containing factors that mitigate the harmful effects of phytic acid.

PHYTATES IN FOOD

Phytic acid is present in beans, seeds, nuts, grains-especially in the bran or outer hull; phytates are also found in tubers, and trace amounts occur in certain fruits and vegetables like berries and green beans. Up to 80 percent of the phosphorus-a vital mineral for bones and health-present in grains is locked into an unusable form as phytate.4 When a diet including more than small amounts of phytate is consumed, the body will bind calcium to phytic acid and form insoluble phytate complexes. The net result is you lose calcium, and don't absorb phosphorus. Further, research suggests that we will absorb approximately 20 percent more zinc and 60 percent magnesium from our food when phytate is absent.5

The amount of phytate in grains, nuts, legumes and seeds is highly variable; the levels that researchers find when they analyze a specific food probably depends on growing conditions, harvesting techniques, processing methods, testing methods and even the age of the food being tested. Phytic acid will be much higher in foods grown using modern high-phosphate fertilizers than those grown in natural compost.6

Seeds and bran are the highest sources of phytates, containing as much as two to five times more phytate than even some varieties of soybeans, which we know are highly indigestible unless fermented for long periods. Remember the oat bran fad? The advice to eat bran, or high fiber foods containing different types of bran, is a recipe for severe bone loss and intestinal problems due to the high phytic acid content. Raw unfermented cocoa beans and normal cocoa powder are extremely high in phytates. Processed chocolates may also contain phytates. White chocolate or cocoa butter probably does not contain phytates. More evidence is needed as to phytate content of prepared chocolates and white chocolate. Coffee beans also contain phytic acid. The chart in Figure 1 shows the variability of phytate levels in various common foods as a percentage of dry weight. Phytate levels in terms of milligrams per hundred grams are shown in Figure 2.

DETRIMENTAL EFFECTS

High-phytate diets result in mineral deficiencies. In populations where cereal grains provide a major source of calories, rickets and osteoporosis are common.10

Interestingly, the body has some ability to adapt to the effects of phytates in the diet. Several studies show that subjects given high levels of whole wheat at first excrete more calcium than they take in, but after several weeks on this diet, they reach a balance and do not excrete excess calcium.11 However, no studies of this phenomenon have been carried out over a long period; nor have researchers looked at whether human beings can adjust to the phytate-reducing effects of other important minerals, such as iron, magnesium and zinc.

The zinc- and iron-blocking effects of phytic acid can be just as serious as the calcium-blocking effects. For example, one study showed that a wheat roll containing 2 mg phytic acid inhibited zinc absorption by 18 percent; 25 mg phytic acid in the roll inhibited zinc absorption by 64 percent; and 250 mg inhibited zinc absorption by 82 percent.12 Nuts have a marked inhibitory action on the absorption of iron due to their phytic acid content.13

Over the long term, when the diet lacks minerals or contains high levels of phytates or both, the metabolism goes down, and the body goes into mineral-starvation mode. The body then sets itself up to use as little of these minerals as possible. Adults may get by for decades on a high-phytate diet, but growing children run into severe problems. In a phytate-rich diet, their bodies will suffer from the lack of calcium and phosphorus with poor bone growth, short stature, rickets, narrow jaws and tooth decay; and for the lack of zinc and iron with anemia and mental retardation.

THE EXPERIMENTS OF EDWARD MELLANBY

As early as 1949, the researcher Edward Mellanby demonstrated the demineralizing effects of phytic acid. By studying how grains with and without phytic acid affect dogs, Mellanby discovered that consumption of high-phytate cereal grain interferes with bone growth and interrupts vitamin D metabolism. High levels of phytic acid in the context of a diet low in calcium and vitamin D resulted in rickets and a severe lack of bone formation.

His studies showed that excessive phytate consumption uses up vitamin D. Vitamin D can mitigate the harmful effects of phytates, but according to Mellanby, "When the diet is rich in phytate, perfect bone formation can only be procured if sufficient calcium is added to a diet containing vitamin D."20

Mellanby's studies showed that the ricketsproducing effect of oatmeal is limited by calcium.21 Calcium salts such as calcium carbonate or calcium phosphate prevent oatmeal from exerting rickets-producing effect. According to this view, the degree of active interference with calcification produced by a given cereal will depend on how much phytic acid and how little calcium it contains, or how little calcium the diet contains. Phosphorus in the diet (at least from grains) needs some type of calcium to bind to. This explains the synergistic combination of sourdough bread with cheese. Historically, the cultivation of grains usually accompanies the raising of dairy animals; high levels of calcium in the diet mitigates the mineral-depleting effects of phytic acid.

In Mellanby's experiments with dogs, increasing vitamin D made stronger bones regardless of the diet, but this increase did not have a significant impact on the amount of calcium excreted. Those on diets high in phytate excreted lots of calcium; those on diets high in phosphorus from meat or released from phytic acid through proper preparation excreted small amounts of calcium.

Based on Mellanby's thorough experiments, one can conclude that the growth of healthy bones requires a diet high in vitamin D, absorbable calcium and absorbable phosphorus, and a diet low in unabsorbable calcium (supplements, pasteurized dairy) and unabsorbable phosphorus (phytates). Interestingly, his experiments showed that unbleached flour and white rice were less anti-calcifying than whole grains that contain more minerals but also were higher in phytic acid. Other experiments have shown that while whole grains contain more minerals, in the end equal or lower amounts of minerals are absorbed compared to polished rice and white flour. This outcome is primarily a result of the blocking mechanism of phytic acid, but may be secondarily the result of other anti-nutrients in grains.

Thus, absorbable calcium from bone broths and raw dairy products, and vitamin D from certain animal fats, can reduce the adverse effects of phytic acid.

Other studies show that adding ascorbic acid can significantly counteract inhibition of iron assimilation by phytic acid.22 Adding ascorbic acid significantly counteracted phytate inhibition from phytic acid in wheat.23 One study showed that anti-iron phytate levels in rice were disabled by vitamin C in collard greens.24

Research published in 2000 indicates that both vitamin A and beta-carotene form a complex with iron, keeping it soluble and preventing the inhibitory effect of phytates on iron absorption.25 Here we have another reason to consume phytate-rich foods in the context of a diet containing organ meat and animal fats rich in vitamin A, and fruits and vegetables rich in carotenes.

PHYTASE

Phytase is the enzyme that neutralizes phytic acid and liberates the phosphorus. This enzyme co-exists in plant foods that contain phytic acid.

Ruminant animals such as cows, sheep and goats have no trouble with phytic acid because phytase is produced by rumen microorganisms; monogastric animals also produce phytase, although far less. Mice produce thirty times more phytase than humans,26 so they can be quite happy eating a raw whole grain. Data from experiments on phytic acid using mice and other rodents cannot be applied to humans.

In general, humans do not produce enough phytase to safely consume large quantities of high-phytate foods on a regular basis. However, probiotic lactobacilli, and other species of the endogenous digestive microflora can produce phytase.27 Thus, humans who have good intestinal flora will have an easier time with foods containing phytic acid. Increased production of phytase by the gut microflora explains why some volunteers can adjust to a high-phytate diet. Sprouting activates phytase, thus reducing phytic acid.28 The use of sprouted grains will reduce the quantity of phytic acids in animal feed, with no significant reduction of nutritional value.29

Soaking grains and flour in an acid medium at very warm temperatures, as in the sourdough process, also activates phytase and reduces or even eliminates phytic acid.

Before the advent of industrial agriculture, farmers typically soaked crushed grain in hot water before feeding it to poultry and hogs. Today, feed manufacturers add phytase to grain mixes to get better growth in animals. Commercial phytases are typically produced using recombinant DNA technology. For example, a bacterial phytase gene has recently been inserted into yeast for commercial production.

Not all grains contain enough phytase to eliminate the phytate, even when properly prepared. For example, corn, millet, oats and brown rice do not contain sufficient phytase to eliminate all the phytic acid they contain. On the other hand, wheat and rye contain high levels of phytase-wheat contains fourteen times more phytase than rice and rye contains over twice as much phytase as wheat.30 Soaking or souring these grains, when freshly ground, in a warm environment will destroy all phytic acid. The high levels of phytase in rye explain why this grain is preferred as a starter for sourdough breads.

Phytase is destroyed by steam heat at about 176 degrees Fahrenheit in ten minutes or less. In a wet solution, phytase is destroyed at 131-149 degrees Fahrenheit.31 Thus heat processing, as in extrusion, will completely destroy phytase-think of extruded all-bran cereal, very high in phytic acid and all of its phytase destroyed by processing. Extruded cereals made of bran and whole grains are a recipe for digestive problems and mineral deficiencies!

Phytase is present in small amounts in oats, but heat treating to produce commercial oatmeal renders it inactive. Even grinding a grain too quickly or at too high a temperature will destroy phytase, as will freezing and long storage times. Fresh flour has a higher content of phytase than does flour that has been stored.32 Traditional cultures generally grind their grain fresh before preparation. Weston Price found that mice fed whole grain flours that were not freshly ground did not grow properly.33

Cooking is not enough to reduce phytic acid-acid soaking before cooking is needed to activate phytase and let it do its work. For example, the elimination of phytic acid in quinoa requires fermenting or germinating plus cooking (see Figure 3). In general, a combination of acidic soaking for considerable time and then cooking will reduce a significant portion of phytate in grains and legumes.

THE PHYTATE THRESHOLD

It appears that once the phytate level has been reduced, such that there is more available phosphorus than phytate in the grain, we have passed a critical point and the food becomes more beneficial than harmful. Retention of phosphorus decreases when phytate in the diet is 30-40 percent or more of the total phosphorus.35

For best health, phytates should be lowered as much as possible, ideally to 25 milligrams or less per 100 grams or to about .03 percent of the phytate-containing food eaten. At this level, micronutrient losses are minimized. (For phytate content of common foods as a percentage of dry weight, see Figures 4 and 5.)

White rice and white bread are low-phytate foods because their bran and germ have been removed; of course, they are also devitalized and empty of vitamins and minerals. But the low phytate content of refined carbohydrate foods may explain why someone whose family eats white flour or white rice food products may seem to be relatively healthy and immune to tooth cavities while those eating whole wheat bread and brown rice could suffer from cavities, bone loss and other health problems.

PHYTATES AND GERMINATION

Beer home brewers know that in order to make beer, they need malted (sprouted) grains. Soaking and germinating grains is a good idea, but it does not eliminate phytic acid completely. Significant amounts of phytic acid will remain in most sprouted grain products. For example, malting reduces wheat, barley or green gram phytic acid by 57 percent. However, malting reduces anti-nutrients more than roasting.36 In another experiment, malting millet also resulted in a decrease of 23.9 percent phytic acid after 72 hours and 45.3 percent after 96 hours.37

In legumes, sprouting is the most effective way to reduce phytic acid, but this process does not get rid of all of it. Germinating peanuts led to a 25 percent reduction in phytates. After five days of sprouting, chick peas maintained about 60 percent of their phytate content and lentils retained about 50 percent of their original phytic acid content. Sprouting and boiling pigeon pea and bambara groudnut reduced phytic acid by 56 percent.38 Germinating black eyed beans resulted in 75 percent removal of phytate after five days sprouting.

Germination is more effective at higher temperatures, probably because the heat encourages a fermentation-like condition. For pearled millet, sprouting at 92 degrees F for a minimum of 48 hours removed 92 percent of the phytate. At 82 degrees F, even after 60 hours, only 50 percent of phytic acid was removed. Higher temperatures above 86 degrees F seem less ideal for phytate removal, at least for millet.39

Sprouting releases vitamins and makes grains and beans and seeds more digestible. However it is a pre-fermentation step, not a complete process for neutralizing phytic acid. Consuming grains regularly that are only sprouted will lead to excess intake of phytic acid. Sprouted grains should also be soaked and cooked.

ROASTING AND PHYTIC ACID

Roasting wheat, barley or green gram reduces phytic acid by about 40 percent.40 If you subsequently soak roasted grains, you should do so with a culture that supplies additional phytase, as phytase will be destroyed by the roasting process.

ACIDIC SOAKING AND PHYTIC ACID

For grains and legumes that are low in phytase, soaking does not usually sufficiently eliminate phytic acid. Soaking of millet, soya bean, maize, sorghum, and mung bean at 92 degrees F for 24 hours decreased the contents of phytic acid by 4-51 percent.43 With these same grains and beans, soaking at room temperature for 24 hours reduced phytic acid levels by 16-21 percent.44 However, soaking of pounded maize for one hour at room temperature already led to a reduction of phytic acid by 51 percent.45

Sourdough fermentation of grains containing high levels of phytase-such as wheat and rye-is the process that works best for phytate reduction. Sourdough fermentation of whole wheat flour for just four hours at 92 degrees F led to a 60 percent reduction in phytic acid. Phytic acid content of the bran samples was reduced to 44.9 percent after eight hours at 92 degrees F.46 The addition of malted grains and bakers yeast increased this reduction to 92-98 percent. Another study showed almost complete elimination of phytic acid in whole wheat bread after eight hours of sourdough fermentation (See Figure 6).47

A study of phytates in recipes used typically by home bread bakers found that leavening with commercial yeast was much less effective at removing phytates. Yeasted whole wheat breads lost only 22-58 percent of their phytic acid content from the start of the bread making process to the complete loaf.48

PHYTIC ACID AND YOU

The purpose of this article is not to make you afraid of foods containing phytic acid, only to urge caution in including grains, nuts and legumes into your diet. It is not necessary to completely eliminate phytic acid from the diet, only to keep it to acceptable levels.

An excess of 800 mg phytic acid per day is probably not a good idea. The average phytate intake in the U.S. and the U.K. ranges between 631 and 746 mg per day; the average in Finland is 370 mg; in Italy it is 219 mg; and in Sweden a mere 180 mg per day.49

In the context of a diet rich in calcium, vitamin D, vitamin A, vitamin C, good fats and lacto-fermented foods, most people will do fine on an estimated 400-800 mg per day. For those suffering from tooth decay, bone loss or mineral deficiencies, total estimated phytate content of 150-400 mg would be advised. For children under age six, pregnant women or those with serious illnesses, it is best to consume a diet as low in phytic acid as possible.

In practical terms, this means properly preparing phytate-rich foods to reduce at least a portion of the phytate content, and restricting their consumption to two or three servings per day. Daily consumption of one or two slices of genuine sourdough bread, a handful of nuts, and one serving of properly prepared oatmeal, pancakes, brown rice or beans should not pose any problems in the context of a nutrient-dense diet. Problems arise when whole grains and beans become the major dietary sources of calories- when every meal contains more than one whole grain product or when over-reliance is placed on nuts or legumes. Unfermented soy products, extruded whole grain cereals, rice cakes, baked granola, raw muesli and other high-phytate foods should be strictly avoided.

RICE

Brown rice is high in phytates. One reference puts phytate content at 1.6 percent of dry weight, another at 1250 mg per 100 grams dry weight (probably about 400 mg per 100 grams cooked rice). Soaking brown rice will not effectively eliminate phytates because brown rice lacks the enzyme phytase; it thus requires a starter. Nevertheless, even an eight-hour soak will eliminate some of the phytic acid, reducing the amount in a serving to something like 300 mg or less.

The ideal preparation of rice would start with home-milling, to remove a portion of the bran, and then would involve souring at a very warm temperature (90 degrees F) at least sixteen hours, preferably twenty-four hours. Using a starter would be ideal (see sidebar recipe). For those with less time, purchase brown rice in air-tight packages. Soak rice for at least eight hours in hot water plus a little fresh whey, lemon juice or vinegar. If you soak in a tightly closed mason jar, the rice will stay warm as it generates heat. Drain, rinse and cook in broth and butter.

NUTS

In general, nuts contain levels of phytic acid equal to or higher than those of grains. Therefore those consuming peanut butter, nut butters or nut flours, will take in phytate levels similar to those in unsoaked grains. Unfortunately, we have very little information on phytate reduction in nuts. Soaking for seven hours likely eliminates some phytate. Based on the accumulation of evidence, soaking nuts for eighteen hours, dehydrating at very low temperatures-a warm oven-and then roasting or cooking the nuts would likely eliminate a large portion of phytates.

Nut consumption becomes problematic in situations where people on the GAPS diet and similar regimes are consuming lots of almonds and other nuts as a replacement for bread, potatoes and rice. The eighteen-hour soaking is highly recommended in these circumstances.

It is best to avoid nut butters unless they have been made with soaked nuts-these are now available commercially. Likewise, it is best not to use nut flours-and also coconut flour-for cooking unless they have been soured by the soaking process.

It is instructive to look at Native American preparation techniques for the hickory nut, which they used for oils. To extract the oil they parched the nuts until they cracked to pieces and then pounded them until they were as fine as coffee grounds. They were then put into boiling water and boiled for an hour or longer, until they cooked down to a kind of soup from which the oil was strained out through a cloth. The rest was thrown away. The oil could be used at once or poured into a vessel where it would keep a long time.50

By contrast, the Indians of California consumed acorn meal after a long period of soaking and rinsing, then pounding and cooking. Nuts and seeds in Central America were prepared by salt water soaking and dehydration in the sun, after which they were ground and cooked.

BEANS

All beans contain phytic acid and traditional cultures usually subjected legumes to a long preparation process. For example, according to one source, "Lima beans in Nigeria involve several painstaking processes to be consumed as a staple."51 In central America, beans are made into a sour porridge called chugo, which ferments for several days.

The best way of reducing phytates in beans is sprouting for several days, followed by cooking. An eighteen-hour fermention of beans without a starter at 95 degrees F resulted in 50 percent phytate reduction.52 Lentils fermented for 96 hours at 108 degrees F resulted in 70-75 percent phytate destruction.53 Lentils soaked for 12 hours, germinated 3-4 days and then soured will likely completely eliminate phytates.

Soaking beans at moderate temperatures, such as for 12 hours at 78 degrees F results in an 8-20 percent reduction in phytates.54

When legumes comprise a large portion of the diet, one needs to go to extra steps to make beans healthy to eat. Beans should usually have hull and bran removed. Adding a phytase-rich medium to beans would help eliminate the phytic acid in beans. Adding yeast, or effective micororganisms, or kombu seaweed may greatly enhance the predigestive process of the beans. One website suggests using a starter containing effective microorganisms and cultured molasses for soaking beans.55

At a minimum, beans should be soaked for twelve hours, drained and rinsed several times before cooking, for a total of thirty-six hours. Cooking with a handful of green weed leaves, such as dandelion or chickweed, can improve mineral assimilation.

TUBERS

Sweet potatoes and potatoes contain little phytic acid but yams and other starchy staples contain levels of phytate that we cannot ignore. The phytic acid content of arrowroot is unknown, but it may contain a significant amount.56 These foods should be fermented-as they usually are in traditional cultures-if they are a staple in the diet. For occasional eating, cooking well and consuming with plenty of butter and vitamin C-rich foods should suffice.

BREAD

Bread can only be called the staff of life if it has undergone careful preparation; otherwise bread can be the road to an early grave. For starters, the flour used in bread should be stone ground. Wheat and rye contain high levels of phytase, but this is destroyed by the heat of industrial grinding, and also lessens over time. Fresh grinding of wheat or rye berries before use will ensure that the original amount of phytase remains in the flour.

Rye has the highest level of phytase in relation to phytates of any grain, so rye is the perfect grain to use as a sourdough starter. Phytates in wheat are greatly reduced during sourdough preparation, as wheat is also high in phytase. Yeast rising bread may not fully reduce phytic acid levels.57 Phytate breakdown is significantly higher in sourdough bread than in yeasted bread.58

Yet even with the highly fermentable rye, a traditional ancient recipe from the French calls for removal of 25 percent of the bran and coarse substances.59 As an example of this practice, one small bakery in Canada sifts the coarse bran out of the flour before making it into bread.62

OATS

Oats contain very little phytase, especially after commercial heat treatment, and require a very long preparation period to completely reduce phytic acid levels. Soaking oats at 77 degrees F for 16 hours resulted in no reduction of phytic acid, nor did germination for up to three days at this temperature.63 However, malting (sprouting) oats for five days at 52 degrees F and then soaking for 17 hours at 120 degrees F removes 98 percent of phytates. Adding malted rye further enhances oat phytate reduction.64 Without initial germination, even a five-day soaking at a warm temperature in acidic liquid may result in an insignificant reduction in phytate due to the low phytase content of oats. On the plus side, the process of rolling oats removes a at least part of the bran, where a large portion of the phytic acid resides.

How do we square what we know about oats with the fact that oats were a staple in the diet of the Scots and Gaelic islanders, a people known for their robust good health and freedom from tooth decay? For one thing, high amounts of vitamin D from cod's liver and other sources, helps prevent calcium losses from the high oat diet. Absorbable calcium from raw dairy products, consumed in abundance on mainland Scotland, provides additional protection.

In addition, it is likely that a good part of the phytase remained in the oats of yore, which partially germinated in stacks left for a period in the field, were not heat treated and were hand rolled immediately prior to preparation. And some Scottish and Gaelic recipes do call for a long fermentation of oats before and even after they are cooked.

Unprocessed Irish or Scottish oats, which have not been heated to high temperatures, are availabile in some health food stores and on the internet. One study found that unheated oats had the same phytase activity as wheat.65 They should be soaked in acidulated water for as long as twenty-four hours on top of a hot plate to keep them at about 100 degrees F. This will reduce a part of the phytic acid as well as the levels of other anti-nutrients, and result in a more digestible product. Overnight fermenting of rolled oats using a rye starter-or even with the addition of a small amount of fresh rye flour-may result in a fairly decent reduction of phytate levels. It is unclear whether heat-treated oats are healthy to eat regularly.

SEEDS

Seeds-such as pumpkin seeds-are extremely high in phytic acid and require thorough processing to remove it. Some may be removed by soaking and roasting. It is best to avoid consuming or snacking on raw seeds. By the way, cacao is a seed. Cacao contains irritating tannins and is said to be extremely high in phytic acid, although studies verifying phytic acid levels in cacao could not be located. Some brands of raw cocoa and cocoa powder may be fermented, others may not be. Check with the manufacturer before indulging!

CORN

Corn is high in phytic acid and low in phytase. The Native Americans fermented cooked corn meal for two weeks, wrapped in corn husks, before preparing it as a flat bread or tortilla. In Africa, corn is fermented for long periods of time using a lactobacillis culture to produce foods like kishk, banku, or mawe. No such care is given to corn products in the western world! But you can prepare healthy corn products at home. As with oatmeal, the addition of a rye starter or rye flour to the soaking water may be particularly helpful in reducing phytate content-think of the colonial "Ryn'n'Injun" bread made from rye and corn. In one research project, soaking ground corn with 10 percent whole rye flour resulted in a complete reduction of phytate in six hours.66 Again, more research-and more experimenting in the kitchen-is needed!

RYE TO THE RESCUE

For those who need to reduce phytic acid to minimum levels-those suffering from tooth decay, bone loss and nutrient deficiencies-the magic ingredient is rye. To bring the phytate content of your diet to the absolute minimum, add freshly ground rye flour or a sourdough rye culture to rolled or cut oats, cornmeal, rice and other low-phytase grains, then soak in an acidic medium-preferably water with whey, yogurt or sour milk added-on a hot plate to bring the temperature up to about 100 degrees F. This is a better solution than consuming white rice and white flour, which are relative low in phytate but have a greatly reduced mineral content (see Figure 7).

The intention of the article is not to impose a decision about whether or not to consume grains, nuts, seeds and beans; rather it is to clarify how to consume them with awareness. This way you can maximize your health by making grain-based foods more digestible and absorbable. Now it is very clear which foods contain phytic acid and how much they contain, what the health effects of phytic acid are and how to mitigate phytic acid in your diet with complementary foods rich in vitamin C, vitamin D and calcium. Methods for preparation of grains, seeds, and beans have been clarified, so that you can estimate how much phytic acid you are consuming. One meal high in phytic acid won't cause a healthy person any harm. But high phytic acid levels over weeks and months can be very problematic.

Fortunately, not only are properly prepared foods better for you, they also taste great. Now you can enjoy some well fermented sourdough bread, together with a piece of raw milk cheese, lots of butter and a slice of meat of your choice and taste the essence of life.

Note to readers: This article is a work in progress. Please send additional information or comments to This e-mail address is being protected from spambots. You need JavaScript enabled to view it



SIDEBARS

FIGURE 1: FOOD SOURCES OF PHYTIC ACID7
As a percentage of dry weight

FOOD MINIMUM MAXIMUM
Sesame seed flour 5.36 5.36
Brazil nuts 1.97 6.34
Almonds 1.35 3.22
Tofu 1.46 2.90
Linseed 2.15 2.78
Oat meal 0.89 2.40
Beans, pinto 2.38 2.38
Soy protein concentrate 1.24 2.17
Soybeans 1.00 2.22
Corn 0.75 2.22
Peanuts 1.05 1.76
Wheat flour 0.25 1.37
Wheat 0.39 1.35
Soy beverage 1.24 1.24
Oats 0.42 1.16
Wheat germ 0.08 1.14
Whole wheat bread 0.43 1.05
Brown rice 0.84 0.99
Polished rice 0.14 0.60
Chickpeas 0.56 0.56
Lentils 0.44 0.50

FIGURE 2: PHYTIC ACID LEVELS8
In milligrams per 100 grams of dry weight

Brazil nuts 1719
Cocoa powder 1684-1796
Brown rice 12509
Oat flakes 1174
Almond 1138 - 1400
Walnut 982
Peanut roasted 952
Peanut ungerminated 821
Lentils 779
Peanut germinated 610
Hazel nuts 648 - 1000
Wild rice flour 634 - 752.5
Yam meal 637
Refried beans 622
Corn tortillas 448
Coconut 357
Corn 367
Entire coconut meat 270
White flour 258
White flour tortillas 123
Polished rice 11.5 - 66
Strawberries 12

PHYTATES: A BENEFICIAL ROLE?

As evidence of the detrimental effects of phytates accumulates, reports on alleged beneficial effects have also emerged. In fact, a whole book, Food Phytates, published in 2001 by CRC press, attempts to build a case for "phytates' potential ability to lower blood glucose, reduce cholesterol and triacylglycerols, and reduce the risks of cancer and heart disease."14

One argument for the beneficial effects of phytates is based on the premise that they act as anti-oxidants in the body. But recent studies indicate that an overabundance of anti-oxidants is not necessarily a good thing as these compounds will inhibit the vital process of oxidation, not only in our cells but also in the process of digestion.

Another theory holds that phytates bind to extra iron or toxic minerals and remove them from the body, thus acting as chelators and promoting detoxification. As with all anti-nutrients, phytates may play a therapeutic role in certain cases.

For example, researchers claim that phytic acid may help prevent colon cancer and other cancers.15 Phytic acid is one of few chelating therapies used for uranium removal.16

Phytic acid's chelating effect may serve to prevent, inhibit, or even cure some cancers by depriving those cells of the minerals (especially iron) they need to reproduce.17 The deprivation of essential minerals like iron would, much like other broad treatments for cancer, also have negative effects on non-cancerous cells. For example, prolonged use of phytic acid to clear excess iron may deprive other cells in the body that require iron (such as red blood cells).

One theory is that phytates can help patients with kidney stones by removing excess minerals from the body. However, a long-term study involving over forty-five thousand men found no correlation between kidney stone risk and dietary intake of phytic acid.18

Phytates also have the potential for use in soil remediation, to immobilize uranium, nickel and other inorganic contaminants.19

OTHER ANTI-NUTRIENTS

Phytates represent just one of many anti-nutrients in grains, nuts, tubers, seeds and beans. These include oxalates, tannins, trypsin inhibitors, enzyme inhibitors, lectins (hemagglutinins), protease inhibitors, gluten, alpha-amylase inhibitors and alkylresorcinols .

Anti-nutrients exist in these plant foods because they are part of the process of life. The natural world requires them in order to perform many important tasks, including protection against insects, maintaining freshness of seeds for germination, and protection against mold and fungus. In order to consume these foods on a regular basis we must remove the phytates and other anti-nutrients through processing in harmonious ways. Many people in the health field assure us that if something is from nature, then it doesn't require processing. Phytates act as the seed's system of preservatives, like the impossible-to-open plastic packaging of many consumer goods. To get to the item we need-namely, phosphorus-we need to unwrap the phytate-phosphorus package.

FIGURE 3: QUINOA PHYTATE REDUCTION34

PROCESS PHYTATE REDUCTION
Cooked for 25 minutes at 212 degrees F 15-20 percent
Soaked for 12-14 hours at 68 degrees F, then cooked 60-77 percent
Fermented with whey 16-18 hours at 86 degrees F, then cooked 82-88 percent
Soaked 12-14 hours, germinated 30 hours, lacto-fermented 16-18 hours, then cooked at 212 degrees F for 25 minutes 97-98 percent

FIGURE 4: PHYTATE41
As Percentage of Dry Weight

Sesame seeds dehulled 5.36
100% Wheat bran cereal 3.29
Soy beans 1.00 - 2.22
Pinto beans 0.60 - 2.38
Navy beans 0.74 - 1.78
Parboiled brown rice 1.60
Oats 1.37
Peanuts 1.05 - 1.76
Barley 1.19
Coconut meal 1.17
Whole corn 1.05
Rye 1.01
Wheat flour 0.96
Brown rice 0.84 - 0.94
Chickpeas 0.28 - 1.26
Lentils 0.27 - 1.05
Milled (white) rice 0.2

FIGURE 5: BREAD PHYTATES42
As Percentage of Weight

Cornbread 1.36
Whole wheat bread 0.43-1.05
Wheat bran muffin 0.77-1.27
Popped corn 0.6
Rye 0.41
Pumpernickel
0.16
White bread 0.03- .23
French bread 0.03
Sourdough rye 0.03
Soured buckwheat 0.03

PREPARATION OF BROWN RICE

1. Soak brown rice in dechlorinated water for 24 hours at room temperature, without changing the water. Reserve 10 percent of the soaking liquid (which should keep for a long time in the fridge). Discard soaking liquid and cook rice in fresh water. This will break down about 50 percent of the phytic acid.

2. The next time you make brown rice, use the same procedure as above with a fresh batch of dechlorinated water, but add the 10 percent soaking liquid from the last batch. This will break down about 65 percent percent of the phytic acid in 24 hours.

3. Repeat the cycle of fresh water soaking with the previous 10 percent reserve. The process will gradually improve until 96 percent or more of the phytic acid is degraded at 24 hours. The authors found that it took four rounds to get to 96 percent. Source: Stephan Guyenet http://wholehealthsource.blogspot.com/2009/04/new-way-to-soak-brown-rice.html.

PHYTATES IN BRAN

A survey of indigenous dishes shows that the bran is consistently removed from a variety of grains. The only exception seems to be beer. Traditional beer production-involving soaking, germination, cooking and fermentation-removes phytic acid and releases the vitamins from the bran and germ of grains.

The traditional method for preparing brown rice is to pound it in a mortar and pestle in order to remove the bran. The pounding process results in milled rice, which contains a reduced amount of the bran and germ. Experiments have verified the fact that milled rice, rather than whole brown rice, results in the highest mineral absorption from rice.

The idea we should eat bran is based on the idea of "not enough." We somehow believe that grains without the bran do not provide enough nutrients. But solving the problem of a lack of bioavailable minerals in the diet may be more a question of soil fertility than of consuming every single part of the grain. A study of the famous Deaf Smith County Texas, the "town without a toothache"-because of their mineral-rich soil producing fabulous butter fat-found that its wheat contained six times the amount of phosphorus as normal wheat.60 In this case, wheat minus the bran grown in rich soils will have significant amounts or even more phosphorus compared to wheat with the bran grown in poor soil. Low nutrient content in food seems to be better solved by focusing on soil fertility, rather than trying to force something not digestible into a digestible form.

There are many studies in which researchers have tried to find out how to make the bran of different grains digestible and to provide additional nutrition. But small additions of phosphorus- and calcium-rich dairy products, such as milk and cheese, or phosphorous-rich meat will make up for the moderate reductions in mineral intakes from grains without the bran. In one study, the calcium, magnesium, phosphorous and potassium in diets made up with 92 percent flour (almost whole wheat) were less completely absorbed than the same minerals in diets made up with 69 percent flour (with a significant amount of bran and germ removed).61 This study involved yeasted bread. With sourdough bread, the phytate content of bran will be largely reduced if a phytase-rich starter is used and the flour is fermented at least twenty-four hours.

FIGURE 7: NUTRIENTS IN GRAINS AND OTHER FOODS67
In milligrams per 100 grams.

Calcium Phosphorus Iron Calories
Whole grain wheat flour 34 346 3.9 339
Unenriched white flour 15 108 1.2 364
White rice 9 108 0.4 366
Milled rice 10-30 80-150 .2-2.8 349-373
Brown rice 10-50 170-430 .2-5.2 363-385
Blue corn mush (Navajo) 96 39 2.9 54
Acorn stew 62 14 1 95
Milk 169 117 0.1 97
Free range buffalo steak 4 246 3.8 146
Cheese, mozarella 505 354 0.4 300

SOME FERMENTED GRAIN FOODS FROM AFRICA

KISHK, a fermented product prepared from parboiled wheat and milk, is consumed in Egypt and many Arabian countries. During the preparation of kishk, wheat grains are boiled until soft, dried, milled and sieved in order to remove the bran. Milk is separately soured in earthenware containers, concentrated and mixed with the moistened wheat flour thus prepared, resulting in the preparation of a paste called a hamma. The hamma is allowed to ferment for about 24 hours, following which it is kneaded. Soured salted milk is added prior to dilution with water. Fermentation is allowed to proceed for a further 24 hours. The mass is thoroughly mixed, formed into balls and dried.

BANKU is a popular staple consumed in Ghana. It is prepared from maize or a mixture of maize and cassava. The preparation involves steeping the raw material in water for 24 hours followed by wet milling and fermentation for three days. The dough is then mixed with water at a ratio of 4 parts dough to 2 parts water; or 4 parts dough to 1 part cassava and 2 parts water. Continuous stirring and kneading of the fermented dough is required to attain an appropriate consistency during subsequent cooking. Microbiological studies of the fermentation process revealed that the predominant microorganisms involved are lactic acid bacteria and moulds.

MAWE is a sour dough prepared from partially dehulled maize meal which has undergone natural fermentation for a one- to three-day period. Traditional mawe production involves cleaning maize by winnowing, washing in water and crushing in a plate disc mill. The crushed maize is screened by sieving whereby grits and hulls are separated by gravity and the fine endosperm fraction collected in a bowl. The grits are not washed but home dehulled, following which they are mixed with the fine fraction, moistened over a 2- to 4-hour period and milled to a dough. The kneaded dough is then covered with a polyethylene sheet and allowed to ferment naturally to a sour dough in a fermentation bowl, or wrapped in paper or polyethylene. In the commercial process which takes place entirely in a milling shop, the grits are washed by rubbing in water, following which the germ and remaining hulls are floated off and discarded along with the water. The sedimented endosperm grits are subsequently blended with the fine endosperm fraction. The dominant microorganisms in mawe preparation include lactic acid bacteria and yeasts.

INJERA is the most popular baked product in Ethiopia. It is a fermented sorghum bread with a very sour taste. The sorghum grains are dehulled manually or mechanically and milled to flour which is subsequently used in the preparation of injera. On the basis of production procedures three types of injera are distiguishable: thin injera which results from mixing a portion of fermented sorghum paste with three parts of water and boiling to yield a product known as absit, which is, in turn, mixed with a portion of the original fermented flour; thick injera, which is reddish in color with a sweet taste, consisting of a paste that has undergone only minimal fermentation for 12-24 hours; and komtata-type injera, which is produced from over-fermented paste, and has a sour taste. The paste is baked or grilled to give a bread-like product. Yeasts are the major microorganisms involved in the fermentation of the sweet type of injera. Source: http://www.fao.org/docrep/x2184e/x2184e07.htm#pre

IRISH AND SCOTTISH OATMEAL and Phytates

Commercial oats in the U.S. are heat treated to about 200o F for four or five hours, to prevent rancidity-oats are rich in polyunsaturated oils that can go rancid within three months, especially at warm temperatures, and oats are harvested only once a year. Heat treatment kills enzymes that accelerate oxidation and helps prevent a bitter taste, although it surely damages the fragile polyunsaturated oils as well.

While Irish and Scottish oatmeal is said to be "unheated," this is not exactly true; these oats are also heat treated -for the same reasons, to minimize rancidity-but usually at lower temperatures. McCann's Irish steel cut oats are heated to 113-118o F but Hamlyn's heats to 212o F. Truly raw rolled oats are available from www.rawguru.com.

The Alford brand, available only in the U.K., is kiln dried for four hours according to their website www.oatmealofalford.com; they do not provide temperatures.

Hulless oats that have not been heat treated are available from www.sproutpeople.com; these can be ground or rolled at home before soaking and preparation as oat meal.


REFERENCES

1. Tannenbaum and others. Vitamins and Minerals, in Food Chemistry, 2nd edition. OR Fennema, ed. Marcel Dekker, Inc., New York, 1985, p 445.

2. Ibid.

3. Singh M and Krikorian D. Inhibition of trypsin activity in vitro by phytate. Journal of Agricultural and Food Chemistry 1982 30(4):799-800.

4. Johansen K and others. Degradation of phytate in soaked diets for pigs. Department of Animal Health, Welfare and Nutrition, Danish Institute of Agricultural Sciences, Research Centre Foulum, Tjele, Denmark.

5. Navert B and Sandstrom B. Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. British Journal of Nutrition 1985 53:47-53; Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans1-3. Bohn T and others. American Journal of Clinical Nutrition. 2004 79:418 -23.

6. Srivastava BN and others. Influence of Fertilizers and Manures on the Content of Phytin and Other Forms of Phosphorus in Wheat and Their Relation to Soil Phosphorus. Journal of the Indian Society of Soil Science. 1955 III:33-40.

7. Reddy NR and others. Food Phytates, CRC Press, 2001.

8. Figures collected from various sources. Inhibitory effect of nuts on iron absoprtion. American Journal of Clinical Nutrition 1988 47:270-4; J Anal At Spectrum. 2004 19,1330 -1334; Journal of Agriculture and Food Chemistry 1994, 42:2204-2209.

9. Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chemistry 2008 110:821-828.

10. Wills MR and others. Phytic Acid and Nutritional Rickets in Immigrants. The Lancet, April 8, 1972, 771-773.

11. Walker ARP and others. The Effect of Bread Rich in Phytate Phosphorus on the metabolism of Certain Mineral Salts with Special Reference to Calcium. The Biochemical Journal 1948 42(1):452-461.

12. Iron absorption in man: ascorbic acid and dose-depended inhibition. American Journal of Clinical Nutrition. Jan 1989 49(1):140-144

13. Inhibitory effect of nuts on iron absorption. American Journal of Clinical Nutrition 1988 47:270-4.

14. Reddy NR and others. Food Phytates, CRC Press, 2001.

15. Vucenik I and Shamsuddin AM. Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. The Journal of Nutrition 2003 Nov 133(11 Suppl 1); Jenab M and Thompson LU (August 2000). Phytic acid in wheat bran affects colon morphology, cell differentiation and apoptosis. Carcinogenesis 2000 Aug 21(8):1547-52.

16. Cebrian D and others. Inositol hexaphosphate: a potential chelating agent for uranium. Radiation Protection Dosimetry 2007 127(1-4):477-9.

17. http://www.phytochemicals.info/phytochemicals/phytic-acid.php.

18. Critical Reviews in Food Science and Nutrition, 1995 35(6):495- 508.

19 Seaman JC and others. In situ treatment of metals in contaminated soils with phytate. Journal of Environmental Quality 2003 32(1):153-61.

20. Mellanby E. The Rickets-producing and anti-calcifying action of phytate. Journal of Physiology I949 I09:488-533.

21. Creese DH and Mellanby E. Phytic acid and the rickets-producig action of cereals. Field Laboratory, University of Sheffield, and the Department of Biochemistry, Queen's University, Belfast (Received 11 August 1939)

22. Iron absoprtion in man: ascrobic acid and dose-depended inhibition. American Journal of Clinical Nutrition. Jan 1989. 49(1):140-144.

23. Ibid.

24. Rice and iron absorption in man. European Journal of Clinical Nutrition. July 1990. 44(7):489-497.

25. Layrisse M and others. New property of vitamin A and Bcarotene on human iron absorption: effect on phytate and polyphenols as inhibitors of iron absorption. Archivos Latinoamericanos de Nutricion Sept 2000 50(3).

26. Iqbal TH and others. Phytase activity in the human and rat small intestine. Gut. 1994 September 35(9):1233-1236.

27. Famularo G and others. Probiotic lactobacilli: an innovative tool to correct the malabsorption syndrome of vegetarians? Medical Hypotheses 2005 65(6):1132-5.

28. Malleshi NG. Nutritive value of malted millet flours. Plant Foods for Human Nutrition 1986 36:191-6.

29. Malleshi NG. Nutritive value of malted millet flours. Plant Foods for Human Nutrition 1986 36:191-6.

30. Egli I and others. The Influence of Soaking and Germination on the Phytase Activity and Phytic Acid Content of Grains and Seeds Potentially Useful for Complementary Feeding. Journal of Food Science 2002 Vol. 67, Nr. 9.

31. Peers FG. Phytase of Wheat. The Biochemical Journal 1953 53(1):102-110.

32. Campbell J and others. Nutritional Characteristics of Organic, Freshly stone-ground sourdough and conventional breads. http://eap.mcgill.ca/publications/EAP35.htm.

33. Price WA. Nutrition and Physical Degeneration. Price-Pottenger Nutrition Foundation. 8th edition, page 249.

34. Reddy NR and others. Food Phytates, CRC Press, 2001.

35. Gontzea I and Sutzescu P. Natural Antinutritive Substances in Foodstuffs and Forages. Karger AG, Basel, Switzerland, 1968.

36. Antinutritional content of developed weaning foods as affected by domestic processing. Food Chemistry. 1993 47(4):333-336.

37. Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya. Food and Nutrition Bulletin 2002 23(3 supplement).

38. Effects of processing methods on phytic acid level and some constituents in bambara groundnut and pigeon pea. Food Chemistry 1994 50(2):147-151.

39. Reddy NR and others. Food Phytates, CRC Press, 2001, p 118.

40. Food Chemistry 1993. 47(4)333-336.

41. Reddy NR and others. Food Phytates, 1st edition, CRC Press, 2001, pages 30-32

42. Ibid.

43. Lestienne I and others. Relative contribution of phytates, fibers and tannins to low iron and zinc in vitro solubility in pearl millet. Journal of Agricultural Food Chemistry 2005 Oct 53(21):8342-8.

44. Mahgoub SEO and Elhag SA. Effect of milling, soaking, malting, heat-treatment and fermentation on phytate level of four Sudanese sorghum cultivars. Food Chemistry January 1998 61 (1-2):77-80.

45. Hotz C and others. A home-based method to reduce phytate content and increase zinc bioavailability in maize based complementary diets. International Journal of Food Science and Nutrition 2001 52:133-42.

46. Dephytinization of wheat bran by fermentation with bakers' yeast, incubation with barley malt flour and autoclaving at different pH levels. Journal of Cereal Science 2008 48(2):471-476.

47. Hauspy R. Fabrication du pain au levain naturel. Nature et Progres. Paris 1983, 1:26-28.

48. McKenzie-Parnell JM and Davies NT. Destruction of Phytic Acid During Home Breadmaking. Food Chemistry 1986 22:181-192.

49. Ellis R and others. Phytate:zinc and phytate X calcium: zinc millimolar rations in self-selected diets of American, Asian Indians, and Nepalese. Journal of the American Dietetic Association 1987 Aug 87(8):1043-7; Ready NR and others. Food Phytates, CRC Press, 2001

50. http://www.marciesalaskaweb.com/choctawFood.htm

51. Ologhobo AD and Fetuga BL. Distribution of Phosphorus and Phytate in Some Nigerian Varieties of Legumes and some Effects of Processing. Journal of Food Science 1984 Volume 49.

52. Indigenous legume fermentation: effect on some anti-nutrients and in-vitro digestibility of starch and protein. Food Chemistry 1994. 50(4):403-406.

53. Journal of the Science of Food and Agriculture 1996 71(3).

54. Proximate Composition and Mineral and Phytate Contents of Legumes Grown in Sudan. Journal of Food Composition and Analysis 1989 2:69-78.

55. www.gobeyondorganics.com.

56. Analysis of phytate in raw and cooked potatoes. Journal of Food Composition and Analysis 2004 17:217-226; Ion Chromatography of Phytate in Roots and Tubers. Journal of Agriculture and Food Chemistry 2003 51:350-353.

57. Journal of Agriculture and Food Chemistry 2001, 49 (5), pp 2657-2662 DOI: 10.1021/jf001255z Publication Date (Web): May 4, 2001 Copyright 2001 American Chemical Society.

58. Journal of Agriculture and Food Science 2001 49(5):2657-2662.

59. http://www.williamrubel.com/artisanbread/examples/ryebread/rye-bread-from-france-painbouilli.

60. Taylor, Edward. Preliminary Studies on Caries Immunity in the Deaf Smith County (Texas) Area. Journal of the American Dental Association. March, 1942.

61. Mineral Metabolism of Healthy Adults on White and Brown Bread Dietaries. Journal of Physiology 1942 101:44-8.

62. http://www.littlestream.com/.

63. Egli and others. The Influence of Soaking and Germination on the Phytase Activity and Phytic Acid Content of Grains and Seeds Potentially Useful for Complementary Feeding. Journal of Food Science 2002 67(9):3484-3488.

64. Phytate reduction in oats during malting. Journal of Food Science. July/Aug 1992 57(4):994-997.

65. Frolich W and others. Studies on phytase activity in oats and wheat using 31P-NMR spectroscopy. Journal of Cereal Science July 1988 8(1):47-54.

66. Egli and others. Phytic Acid Degradation in Complementary Foods Using Phytase Naturally Occurring in Whole Grain Cereals. Journal of Food Science 2003:68(5):1855-1859.

67. http://www.nutritiondata.com/facts/cereal-grains-and-pasta/5744/2.

This article appeared in Wise Traditions in Food, Farming and the Healing Arts, the quarterly journal of the Weston A. Price Foundation, >Spring 2010.

About the Author

Rami Nagel is a father who cares about the way we affect each other, our children and our planet through our lifestyle choices. His health background is in hands-on energy healing, Hatha and Bhaki yoga, and Pathwork. Rami is author of several health resources: www.healingourchildren.net, www.preconceptionhealth.org, www.curetoothdecay.com, and www.yourreturn.org.

 

 

 

 

 

VERY ROUGH COPY Of the Final Article which is above. I am keeping here for my google juice.

“People Shall Not Live By Bread [With Phytates] Alone”
The Disastrous Effects of Phytates in, Grains, Nuts, Seeds and Beans.

by Ramiel Nagel

 

There is a serious problem with phytates and other indigestible substances in our diets. This problem exists because we have lost touch with our ancestral heritage for food preparation. Instead we listen to useless food “guru’s” and theorists who promote, raw and unprocessed “whole foods.” Yet as you will see in these examples, raw is not Nature’s way for grains, nuts, seeds, beans, and tubers.

 

Through observation I witnessed the powerful anti-nutritional effect of grains. I found that my family and many others were mistakenly processing grains incorrectly, and health problems were the result. Worse, many people could not correlate health difficulties, like tooth decay, with the source – wrong grain, nut, bean, or seed preparation. Frustrated with the lack of cohesive and understandable information on the subject of phytic acid that explained ideal food preparation techniques I took it upon myself so that others could benefit, to find clarity in the fog about some of our most often consumed foods.

 

 

 

There are serious misconceptions about brown rice, oatmeal, potatoes, soaking of grains and nuts, nuts, nut flours, nut butter, and seed consumption. If you consume even one of these foods more than once per week, read on, as your health and your children’s health may be seriously affected by your decisions. And don’t fear I won’t take the lazy position to advocate the simple avoidance of these foods although it would be a good idea if you have a serious illness, or are suffering from severe physical weakness, because we are meant to enjoy the tasty offerings of the Creator. The condition is for eating the “staff of life,” that you need to understand the principals of phytates, anti-nutrients so that you can remove them and convert indigestible minerals, into tasty morsels for your cells.

 

Many people have health problems like: arthritis, poor digestion, poor appetite, skin problems, tooth decay, bone loss, schizophrenia and other mental diseases and more. We blame these problems on strange dis-eases or allergies such as a dairy allergy, or a gluten allergy. Worse we blame microscopic organisms from the “influenza virus” to Candida to streptococcus for many health problems. The main stream remedy of these conditions is to first locate and then destroy the “bad” flora or pathogen as if it was there by accident thus attempt to create a cure. But what if we are not allergic or suffering health problems due to some strange disease, microorganism or ill begotten fate? What if we are suffering because we, not Nature, have made an error? What if we are out of harmony with the Tao, the living way of Nature and as a result becoming ill? What if we are all allergic to improperly processed foods, from pasteurized dairy, to phytate laden grains to synthetic sugar no matter how healthy we are? This concept is beyond the theories of both of my books, Cure Tooth Decay, and Healing Our Children. I have a firm faith that life does not want us to continue to be suffering. But that life wants us to examine how we have self created our suffering. Although it can be sobering, it is also empowering, that you are not a victim of fate, but a victim of a diseased way of living, that if changed, can result in significant health and happiness improvements.

 

The real disease we are facing here is what dentist Weston Price called the “white plague.” It is a disease of ignorance, of living wrongly and blindly. So today, some of this blindness will be removed and you will benefit from this.

 

I have found that a significant chunk of health problems including tooth decay and digestive problems (lack of appetite, lack of digestive ability ect.) are a result of or are significantly influenced by phytates and related anti-nutrients and indigestible substances in grains, nuts, seeds, beans, and tubers. Improvement in health and vitality is simple - eliminate the cause - phytates.

 

What is A Phytate?

Phytate (myo-inositol hexaphosphate) emanates from phytic acid. It is present in beans, seeds, nuts, grains, tubers, and in trace amounts in certain fruits and vegetables like berries and green beans. Phytate is strongly negatively charged at neutral pH values, and has a high affinity for iron, zinc, calcium and magnesium. It chelates iron, zinc, magnesium, copper and calcium. This chelating effect leads to a decrease in bio-available minerals and results in poor animal growth. The harmful effect of phytic acid is nearly unanimously undisputed in over 80 years of nutrition research. Up to 80% of the phosphorus (a vital mineral for bones and health) present in grains is locked into an unusable form as phytate. So if your grain, nut, seed, tuber, or bean have phosphorus but most of it isn’t usable by the body because is completely toxic and indigestible to the body in the phytate form. Phytate is considered an anti-oxidant. But don’t think that means it is good. This anti-oxidant inhibits oxidative damage by four times. This means phytic acid stops the process of oxidation, in other words, it inhibits digestion. When a diet including more than trace amount of phytate is consumed, the body will bind calcium to phytate and form insoluble complexes. The net result is you lose calcium, and don’t absorb phosphorus. Research suggests that we will absorb approximately 50% more minerals, like zinc and magnesium from our food without phytates. Not present in this discussion due to adding too much confusion and a lack of data that I can comprehend, is the fact that there are several kinds of phytates which are termed inositol phosphate, 3, 4, 5 and 6. It is also possible that phytates interact in a dance with other nutrients and anti-nutrients in each food. One lower phytate grain, nut, seed or bean, may have more disease inducing substances than another food with a higher amount of phytate.

 

Health Effects of Phytates

In basic language, phytates take out minerals, and mess up your mineral balance. In many populations where cereal grains provide a major source of calories, rickets and osteoporosis are common. Interestingly, the body has some ability to adapt to the phytates in the diet. The evidence points to the fact that our bodies have a calcium / phosphorous metabolism that can be turned up or down. When there is a lack of these minerals in a digestible form in our diet, the metabolism goes down, and the body goes into mineral starvation mode. The body then sets itself up to use the least of these minerals as possible. Adults can probably get by like this for perhaps decades, but growing children run into a severe problem. In a phytate rich diet their body will reduce its needs for calcium or phosphorus, and the result will be poor bone growth, narrow jaws, and in many cases tooth decay as the body crawls along on a deficient mineral intake.

 

Whole grains have been shown to cause rickets. Yes, the crown jewel of the healthy food community is a disease causing entity unless carefully tended to. Whole grains with phytates may contribute or cause auto-immune diseases like arthritis and diabetes and contribute to autism and schizophrenia. (I did mention this earlier) There is some research indicating that phytates are good. The theory is that they bind to extra iron or other minerals and remove them. While there may be certain therapeutic uses for phytate to help remove minerals from the body when there is an excess, say for example in kidney stones, I don’t think we should be consuming them at all. A long term study with 45,619 men found no correlation between kidney stone risk and dietary intake of phytic acid. It seems like any justification for consuming phytates is from people trying to sell products, or to defend one of the worst nutritional and health disasters of the 21 st century, Bran.

 

COMMENTS ON THIS PARAGRAPH PLEASE: We want our cows to be grass fed, not grain fed. If cows who are plant eaters have problems with grains containing phytate, then humans will surely have double the problems. I wonder if the phytic acid in grains is what causes grain fed animals to gain fat? Perhaps it does the same in humans as well? One study on this subject indicated body weight was reduced by higher bran consumption, but this could be the result of mineral losses due to phytic acid.

 

Phytic acid inhibits enzymes that we need to digest our food including pepsin, amalyase, and trypsin.

 

Phytic Acid Chelates Biological Calcium And Causes Rickets

Famous researcher Edward Mellanby demonstrated with extensive experiments the demineralizing effect of phytic acid in oatmeal. Although he studied oatmeal, any grain, nut, seed, or bean high in phytic acid will have nearly an identical effect.

 

By studying how grains with and without phytic acid effect dogs, Mellanby discovered that high phytate cereal grain consumption interferes with bone growth and affects vitamin d metabolism. Phytic acid, with in a low calcium and low vitamin d diet, will cause rickets and a severe lack of bone formation. Excessive phytate consumption, and possibly phytate free grain consumption will use up vitamin D. Vitamin D can cloak the harmful effects of phytates, but according to Edward Mellanby . “When the diet is rich in phytate, perfect bone formation can only be procured if sufficient Ca is added to a diet containing vitamin D.” The phytate content of oatmeal is sufficient to cause rickets. The phytate immobilizes most or all of the calcium in the diet or grain, making calcium not usable. Phytate removes calcium from the body quickly. The rickets producing effect of oatmeal is limited by calcium.

 

Calcium salts such as calcium carbonate or phosphate prevents oatmeal from having its rickets-producing effect. According to this view, the degree of active interference with calcification produced by a given cereal will depend on how much phytic acid and how little calcium it contains, or how little calcium the diet contains. Phosphorus in the diet (at least from grains) needs some type of calcium to bind unto. This explains many historic cultural combinations of sourdough bread with cheese. Plus they taste good together.

 

In Mellanby’s experiments with dogs increasing vitamin D made stronger bones regardless of the diet, but it didn’t have too much impact on the amount of calcium excreted. Diets high in phytate excreted lots of calcium, diets high in phosphorus from properly prepared phytate excreted small amounts of calcium.

 

Based on Mellanby’s thorough experiments, one can conclude that in order to grow bones requires a diet high in absorbable calcium and absorbable phosphorus, and a diet low in unabsorbable calcium (supplements, grain fed dairy, pasteurized dairy) and unabsorbable phosphorus (phytates). Interestingly his experiments showed that unbleached flour and white rice were less anti-calcifying than whole grains that contain more minerals but also were higher in phytic acid. Other experiments have verified that while whole grains contain more minerals, in the end equal to or less minerals than polished rice and white flour are absorbed. This is primarily a result of phytic acid, but may be secondarily the result of other anti-nutrients in grains.

 

Phytates Block Iron and Zinc Absorption

 

Wheat roll of 2mg inhibited phytic acid by 18%, 25mg 64%, and 250 mg by 82%. Adding ascorbic acid significantly counteracted phytate inhibition. Nuts also have a marked inhibitory action on the absorption of iron due to their phytic acid content.

 

( zinc references missing)

 

Other Anti-nutrients

It is important to understand that while I am point my finger at phytates, they are not the cause of the entire range of health problems with grains, nuts, tubers, seeds or beans. (GNTSB for grains, nuts, tubers, seeds, or beans will now be used.) Yet it is easy and simple to use the idea of phytates as an example of all the anti-nutrients in GNTSB. Grains contain other substances toxic to the body such as: oxalate, tannins, trypsin inhibitors, enzyme inhibitors, lecitin, protease inhibitors, gluten, Alpha-Amylase Inhibitors, and Alkylresorcinols. I am certain that not just grains, but nuts, seeds, beans, and tubers contain a variety of these anti-nutrients as well.

 

Anti-nutrients exist in GNTSB because they are part of the process of life. The natural world requires them in order to do things like: protect against insects, keep the seeds fresh for germination, and protect against molds and funguses. In order to consume these foods on a regular basis we must remove the phytates through processing in harmonious ways. Someone many people have an idea that if it is from nature, it doesn’t require processing. Phytate is like the impossible to open plastic packaging such as in toys shipped from china. To get to our prize, phosphorus, we need to unwrap the phytate-phosphorus package.

 

 

How To Eliminate Phytates

To remove phytates from the GNTSB requires the enzyme phytase. Humans do not have enough phytase or any phytase and likely other enzymes to safely consume high phytate foods on any sort of regular basis. Mice have 30x more phytase than humans, so they can be quite happy eating a raw whole grain. Making conclusions from experiments and evidence about phytates done with mice or similar rodents, need to take this grain digestive ability into account. In addition to the enzyme phytase; heat, time, and an acidic pH all aid and are necessary in the elimination of phytates. Not all grains contain enough phytase to eliminate the phytate. For example, corn, millet, OATS and brown rice do not contain sufficient phytase. So even if you soak these for 5 days, at a warm temperature in acidic liquid, you may have an insignificant reduction in phytate. The tragic result of oatmeal in the morning, even soaked, is the consumption of a large dose of bound up phosphorus (phytate) that will then remove all types of minerals from your body or digestive tract, and over time will contribute to health imbalances. Again, it isn’t oatmeal that is the problem, it is the modern (ignorantly) devised system of harvesting and storing and preparing oats and other grains which destroys phytase. Most oats on the market are heat treated, think of pasteurization for milk. Trying to make heat treated oats into a livable food is like trying to unpastuerize pasteurized milk. It doesn’t ever work exactly as intended. If you have live oats and want to eat them, they need to be germinated, have some of the bran removed, and then soured at least 24 hours.

 

Phytase and heat

Each grain is it’s own entity. Just like a strawberry is different from a blackberry, which is different from a blueberry. Each grain requires its own special care. Yes some grains are the same or similar. There grains with high phytase, wheat, rye, and ancient wheat. ( Rye contains about 3x more phytase in relation to phytic acid than wheat). Soaking these grains, when freshly ground will over time, with heat, destroy phytate. The enzyme phytase is destroyed by steam heat at 80 degrees C (about 176 Fahrenheit) in ten minutes or less. In a wet solution, phytase is destroyed between 55-65 degrees C or (131-149 Fahrenheit). Grains like oats, processed with health above these temperatures will have less or known phytase. While other grains, require a starter to ferment it, like brown rice, or the addition of 10-15% of a high phytase grain like rye. Oats naturally do contain phytase, I don’t know how much, but the process heating oats to preserve them destroys most or all of the phytase. Likewise grinding a grain too quickly to produce too much heat would destroy phytase. Long storage times, and freezing will degrade phytase, but I could not find data on how much. Fresh flour has a higher content of phytase than does flour which has been stored. Native groups generally grind their grain fresh before preparation. Weston Price found that mice fed grains that were whole but not freshly ground did not grow properly.

 

Conclusion about phytase: grains must be as freshly milled as possible when used. The exception may be in sprouted grains ( DO SPROUTED GRAINS STORE BETTER? information not available) or it may not.

 

Misconceptions about Phytate in Our Foods

Before we discuss phytates further, in the tables ( Sally, phytic acid lists are at the end of this document) you will see two types of measurements for phytates in common grains, nuts, seeds, and beans. The two figures are complimentary but do not exactly line up. In addition, different levels of care of raw materials and different types of technology have been used to measure phytate content. There are also figures in the literature of phytate-phosphorus. One gram of phytate phosphorus equals 3.5 grams of phytic acid. As a result, not all figures will be precise, or you may find other figures that negate these figures. For our needs, we don’t need to know the exact percentage or amount of phytate, but rather, if there is significant levels of phytate or not, and what to do about it. I believe ( not totally sure) that the percentage figures refer to phytate data extracted as a dry weight, such as from a dried powder from of the specific food. The mg/ grams figures represent phytate tests that used a whole piece of food to start with, at least that is as far as I can tell. So we will look at this data relatively.

 

Phytate critical threshold.

It appears that once the phytate level has been reduce, such that there is more available phosphorus in the grain, than phytate, we have passed a critical point to where the food becomes more beneficial than harmful. Retention of phosphorus decreased when phytate in diet was 30-40% or more of the total phosphorus. In the ideal case however is near complete removal of phytic acid by eliminating 98-100%. Safe levels of phytates are approximately less than 0.03% content in GNSBT consumed or less than 25 milligrams per 100 grams of GNSBT. This isn’t a license to eat low phytate white rice or white bread, because these foods have other problems and consequences because they are devitalized and not fresh. But it could explain why someone whose family eats white flour or white rice food products, may seem to be relatively healthy and immune to tooth cavities because they won’t be consuming anti-nutrients. While someone eating a “whole grain” bread, a sprouted bread, or brown rice as opposed to white rice, could have tooth cavities or poor dental arch formation. It’s the phytic acid levels.

 

Important findings based on Phytic Acid Tables

Brown rice is high in phytates. One reference put it at 1.6%, another at 1250mg per gram. This is about equal to oats or wheat. Soaking brown rice will not effectively eliminate phytates because brown rice lacks the enzyme phytase, it thus requires a starter. (Directions at the end).

 

Nuts contain an approximately equal to or higher level of phytate than grains. There are some exceptions to this, but it is generally true. Therefore those consuming peanut butter, or nut butters, or nut flours, will be consuming phytate levels similar to those in unsoaked grains. Nuts may need similar preparation to grains, and soaking for seven hours likely eliminates some phytate, but I could not come up with specific evidence as to the amount. Soaking nuts for 18 hours would be better. Soaked nuts contain less phytates and anti-nutrients than unsoaked nuts, but the amount left is still likely significant. Based on the accumulation of evidence soaking nuts for 18 hours, dehydrating and very low temperatures 25-35 Celsius and then roasting or cooking the nuts (not eating them raw) would likely eliminate a good amount of phytates. I could not find references as to the amounts. For example, Native Americans used the hickory nut for its oils. And made hickory nut cream and milk. To extract the oil they parched the nuts until they cracked to pieces and then beat them up until they were as fine as coffee grounds. They were then put into boiling water and boiled for an hour or an hour and a half, until they cooked down to a kind of soup from which the oil was strained out through a cloth. The rest was thrown away. The oil could be used at once or poured into a vessel where it would keep a long time. Not all nuts went through this preparation. But that doesn’t mean that eating raw nuts is or was healthy. For example “Nutritional deficiencies had much to do with the fall of the great pueblos of the twelfth and thirtieth centuries. Some of these deficiencies may have been due to overconsumption of phytate in the maize, though there were also sheer shortages of food...” More evidence is needed regarding phytates in nuts and seeds.

 

Seeds and bran are the highest source of phytates. Containing as much as 2-5 times more phytate than even some varieties of soybeans, which we know are highly indigestible unless fermented for long periods. Therefore, the advice to eat bran, or high fiber foods contain different types of brans, is an extreme recipe for severe bone loss and disease due to the high phytic acid content.

 

Sweet potatoes, yams, and other root staples contain an amount of phytate that we cannot ignore and requires serious fermentation to make it a healthy staple.

 

Raw cocoa beans and powder are extremely high in phytates. Processed chocolates may also contain phytates. White chocolate or cocoa butter probably does not contain phytates. More evidence is needed as to phytate content of prepared chocolates and white chocolate.

 

Sprouting and Soaking is NOT that effective in eliminating Phytates

Beer home brewers know that in order to make a good beer, they need malted grains. Soaking and germinating grains, and beans is a good idea, but it DOES NOT eliminate phytic acid completely. Significant amounts phytic acid will remain in most sprouted grain products. For example, malting reduced wheat, barley or green gram phytic acid by 57%. Malting reduced anti-nutrients more than roasting. Germinating peanuts (I don’t know how long) led to a 25% reduction in phytates. After five days of sprouting, chick peas maintained about 60% of their phytate content and lentils retained about 50% of their original phytic acid content. Sprouting & boiling pigeon pea and bambara groudnut reduced phytic acid by 56%.

 

Sprouting at higher temperatures did eliminate more significant amounts of phytic acid. I believe this would be because the high heat activated the phytase enzyme and created a fermentation like condition. For pearled millet, kept at 30 degrees C (about 92 F) for a minimum of 48 hours 92% of phytate was removed. At 25 degrees C (82 F) even after 60 hours, only 50% of phytic acid was removed. Higher temperatures above 30 degrees C seem less ideal for phytate removal, at least for millet. Germinating black eyed beans resulted in 75% removal of phytate after 5 days sprouting.

 

In another experiment malting millet also resulted a decrease of 23.9% phytic acid after 72 hours and 45.3% after 96 hours .

 

Conclusion about germination/ sprouting: Sprouting releases vitamins and makes grains and beans and seeds more digestible. However it is a pre-fermentation step. It is not a complete process for making grains digestible in itself. Consuming grains regularly that are only sprouted will lead to excess intake of phytic acid.

 

Roasting

Roasting wheat, barley or green gram reduced phytic acid by about 40%.

 

Soaking

Soaking does not usually sufficiently eliminate phytic acid. Soaking of millet, soya bean, maize, sorghum, and mung bean at 30 degrees C (92 F) for 24 h decreased the contents of phytic acid by 4–51%. With these same grains and beans soaking at room temperature for 24 h reduced phytic acid levels by 16–21%. Soaking of pounded maize for 1 h at room temperature already led to a reduction of phytic acid by 51%.Sourdough fermentation (30 C for 4 h), led to a reduction of 60% of phytic acid in whole wheat flour. Phytic acid content of the bran samples was reduced at most to 44.9% of the initial amounts at 8 hours at 30 degress Celsius (92 F). The addition of malted grains and bakers yeast increased this to 92-98%. Was wheat bran heat treated without phytase or simply too hard to break down bran? I have read reports of people being allergic to commercially malted grains, be warned that the commercial process is not as kosher as you would hope.

 

Conclusion about Soaking: Soaking is not a sufficient method for removing phytates for grains, nuts, beans or seeds consumed on a regular basis. Soaking does remove up to 50% of phytic acid when done at a hot temperature. But at room temperature only 16-21% of phytic acid is removed even after 24 hours. Soaking can be part of healthy grain preparation, but should not be relied upon by itself to remove phytates in grains.

 

Yeast Rising

A study of phytates in recipes used typically by home bread bakers found a much less whole wheat breads lost only 22-58% of their phytic acid from the start of the bread making process to the complete loaf.

 

Grinding the Grain

Stone grinding, the slow rubbing between thick granite stones rubs the germ oil of grains evenly throughout the flour. On the other hand, quick bread made from high speed rolling mills, isolate the germ and make it subject to early rancidity. Stone grinding leaves the germ completed fused with the flour. It is unclear how much this is germ oil would be retained in our home mills that go at a moderate speed.

 

Conclusion about Grinding: Do not regularly consume food with grains unless grains are stone milled. Without stone milling, grains may be rendered toxic, rancid, and lack essential vitamins. Pounding, pressing, or other grain reparation methods that are old fashioned should be acceptable.

 

Bran

“The calcium, magnesium, phosphorous and potassium in diets made up with 92% flour [almost whole wheat] were less completely absorbed that the same minerals in diets made up with 69% flour [significant amount of bran and germ removed].” Yeast rising times not stated. “We had a pet talking cockatoo, which would carefully remove all husks and bran from seeds and nuts before eating the inner part only." “When a mouse in a corn crib dines off kernels of corn, he eats the germ only. When we buy any packaged cereal in a grocery store, corn meal or corn flakes, we buy what the mouse refused to eat.”(Royal Lee, Founder of Standard Process, 1949). Again mice have a significantly higher ability to digest and tolerate grains than humans.

 

An experiment with Brown Rice produced a similar result. Iron absorbed from milled rice and brown rice did not differ significantly, as well as that from brown rice-based meal and milled rice-based meal. Differences in iron absorbed from brown/milled rice and brown/milled rice-based meals may be due to the iron content of the test foods and the presence of iron enhancers in the meal (e.g. fish, vegetables and citrus fruit). Note: milled rice is NOT white polished rice. Milled rice contains a fraction of bran and germ. The amount it contains is unclear.

 

Even though whole bread contains more iron, it won’t necessarily be absorbed. In one study the iron ratio dropped in men and women who ate whole wheat bread instead of white bread.

 

Rye has the highest level of phytase in relation to phytates of any grain. Yet even with the highly fermentable rye, a traditional ancient recipe from the French has 25% of the bran and coarse substances removed. As an example of this practice, small bakery in Canada sifts out the course bran. Yeast rising bread may not fully reduce Phytic acid levels.

 

A survey of a variety of indigenous dishes shows the bran is consistently removed from a variety of grains. The only exception seems to be beer. Beer is a method of obtaining vitamins from the bran and germ of the grain, without phytates. I have never tried a commercial beer that felt healthy. But surely one can be made. The traditional method for preparing brown rice is to pound it in a motar and pestle in order to remove the bran. The pounding process results in milled rice, which contains a certain portion of the bran and germ. Milled rice has somewhere between 5-60% of the bran remaining, but that is just a guess, I could not find a specific figure on how much bran is traditionally kept for healthy cultures. Experiments have verified that milled rice results in the highest mineral absorption from rice. Not brown rice.

 

The idea we should eat bran is based on the idea of not enough. We somehow believe that grains without the bran do not have enough nutrients. But solving the problem of a lack of bioavailable minerals in the diet may be more a question of soil fertility, than of consuming every single part of the grain. A study of the famous Deaf SmithCounty Texas, the Town Without a Toothache (because of their mineral rich soil producing fabulous milk fat) found that it’s wheat contained 6 times the amount of phosphorus as normal wheat. In this case, wheat grown in rich soils without the bran, will have significant amounts or even more phosphorus in comparison to wheat grown in poor soil with the bran. Lack of nutrients in foods seems to be better solved by focusing on soil fertility, rather than trying to force something not digestible into a digestible form. There are many studies of researchers trying to figure out how to make the bran of different grains digestible to make up for vitamin deficiencies. It also appears that small additions of phosphorus and calcium rich dairy products (milk and cheese), or phosphorous rich meat (most cuts) will make up for the moderate differences in mineral intakes from grains without the bran.

 

Conclusion about Bran: A certain portion of bran needs to be removed from all grains for consumption. (Not for beer). Bran removal will very from 25-100% depending on the grain and the length of fermentation. Exact details are missing as to the ideal bran removal amount for reach grain. Bran is potentially dangerous to our health and may explain health problems with grains. Do not eat any food that contains bran that has not been fermented with a phytase rich starter for at least 24 hours.

 

Soaking:

Soaking oats at 37-40 degrees C (120 F (55 degress C wheat(140 F)) Malting oats for 5 days at 11 degrees C (52 F) and incubation for 17 hours at (120 F) removed 98% of phytates. Adding malted rye further enhanced oat phtyate reduction.

 

After soaking and germinating oats, souring produced rapid decrease in phytates.

 

 

BEANS

“Lima beans in Nigeria involve several painstaking processes to be consumed as a staple.” (process was not explained)

 

Fermenting beans without starter - 18 hour fermentation at 35 Degress C resulted in 50% phytate reduction (1000mg / 100g original phytate level for dehulled black-gram dhal slurry). Scrubbing and washing quinoa reduced phytic acid by 30%. Lentils fermented for 96 hours at 42 degrees C resulted in 70-75% phytate destruction. Lentils soaked for 12 hours of soaking germinated 3-4 days and then soured will likely to mostly complete phytate elimination.

 

For beans are soaked at moderate temperatures, such as for 12 hours at 24 degrees C (78 degrees F) a 8-20% reduction in phytates will result.

 

Conclusions about Beans: Soaking beans does little to eradicate phytates. Souring was not sufficient either to completely eliminate phytates. One needs to go to extra steps to make beans healthy to eat consistently. Beans should usually have hull and bran removed. Adding a phytase rich medium to beans would help eliminate the phytic acid in beans. Adding yeast, or effective micororganisms, or kombu seaweed may greatly enhance the predigestive process of the beans.

 

Removing phytates from quinoa explains a process that should work for beans.

Quinoa Phytate Reductions

Cooked for 25 minutes at 100 degrees Celsius (212 F) removed 15-20% of phytate.

Soaking quinoa for 12-14hours @ 20 degrees C + cooked 60-77%

Fermented with whey 16-18hrs @ 30 degrees C and cooked 82-88%

Soaking 12-14 hours , germinating 30 hours, lacto fermenting 16-18 hours then cooking at boiling temperature for 25 minutes resulted in 97-98% phytate destruction.

 

FERMENTING BEANS. / Bean Preparation

Birds store seeds in the esophagus, and squirrels and chipmunks have cheek pouches to ferment their nuts and seeds. Beans are soaked overnight in clean water. The following morning the water should be thrown away, beans rinsed in clean water, and a second fresh batch of after is added and continue soaking. In the evening the second batch of water is thrown away, the beans are rinsed tin clean water again, and a third fresh batch of water is used to finally cook the beans. mandatory for any bean.

 

“Next time you cooked any dry beans or peas, soak them 3 times first. Cook in the 4 th, clean water with handful of green weed leaves: dandelion, chickweed, lambs quarters.” “All legume seeds should be first soaked in water, 8 hours that water poured off, and 2 more, 8 hour soaked periods cone through before the seed is cooked in the 4 th fresh water.”

 

Some type of yeast or phytase rich enhancer.

 

 

PHYTIC ACID CHARTS

 

Phytate Amounts in Foods (MG to 100G)

Brazil nuts 1719mg

Cocoa Powder 1684-1796

Brown Rice 1250 mg / 100g

Oat Flakes 1174 mg / 100g (Figure from other chart - Oats 1.37%)

Almond 1138 - 1400

Walnut 982mg / 100g

Peanut Roasted 952

Peanut ungerminated 821 (Figure from other chart 1.05-1.76%)

Peanut germinated 610

Hazel nuts 648 – 1000

Brown Rice & Wild Rice Flour 634 – 752.5

Lentils 779 (Figures from other chart 0.27% - 1.05%)

Yam Meal 637

Refried beans 622

Corn tortillas 448

Coconut 357

Corn 367 (whole corn?)

Entire Coconut Meat 270

White Flour 258

White flour tortillas 123

Polished Rice 11.5 mg to 66mg per 100 g (Thiland)

Strawberry 12

 

Phytate Percentages (dry weight, where there is more than one figure it is due to older testing methods with multiple results from different sources)

Sesame Seeds dehulled 5.36%

100% Wheat Bran Cereal 3.29%

Soy Beans 1.00-2.22%

Pinto Beans 0.60-2.38%

Navy Beans 0.74-1.78%

Parboiled Brown Rice 1.60%

Oats 1.37% (Oat Flakes 1174 mg / 100g)

Peanuts 1.05-1.76% (821 mg/ 100G)

Barley 1.19%

Coconut Meal (I believe this means flour) 1.17%

Whole Corn 1.05%

Rye 1.01%

Wheat Flour .96%

Brown Rice 0.84-0.94%

Chickpeas 0.28-1.26%

Lentil, 0.27% - 1.05% (779 mg/ 100g)

Milled (white) Rice 0.2%

 

 

Bread Phytates By Percentage

Cornbread phytates 1.36%

Whole wheat Bread 0.43-1.05 %

Wheat Bran Muffin 0.77-1.27%

Popped corn 0.6%

Rye .41%

Pumpernickel .16%

White Bread 0.03- .23%

French bread (white flour probably) 0.03%

Sourdough rye, 0.03%

Soured buckwheat 0.03%

 

 

Peas contain phytic acid, arrow root probably does as well.

 

 

Nutrients in Grains Figures per 100 grams.

 

Calcium mg

Phosphorus

Iron

Calories

Whole Grain Wheat Flour

34

346

3.9

339

Unenriched All-Purpose White Flour

15

108

1.2

364

White Rice

9

108

0.4

366

milled rice

10-30

80-150

.2-2.8

349-373

brown rice

10-50

170-430

.2-5.2

363-385

Blue Corn Mush (Navajo)

96

39

2.9

54

Acorn Stew

62

14

1

95

Milk (less than ½ a cup)

169

117

0.1

97

Free Range Buffalo Steak

4

 

246

3.8

146

Cheese, Mozarella

505

354

0.4

300

 

Common figures for whole wheat flour without bran would not be reliable due to commercial milling methods and rancidity.

 

 

 

Calcium and Grains

The phosphorus in grains requires calcium to be used and balanced by the body. In cultures consuming rice, green vegetables are consumed with rice to provide calcium. Fish also is fairly high in calcium. In cultures who do not use vegetables, cheese or yogurt is consumed or even fermented with grains, such as with Kishk. In the Gaelic example, fish was consumed in large quantities and large quantities of liver were consumed. High amounts of vitamin D will help prevent calcium losses from a high oat diet.

 

Other Grain Tips

Calcium reduced phytatic acid degredation by 50%. Using a sour milk starter may be okay, just don’t soak grains in anything that is rich in calcium, like yogurt. This won’t eliminate phytic acid.

Whey and buttermilk will enhance fermentation of grains, nuts, seeds and beans.

Victamin C – Anti-iron phytate levels in rice was disabled by vitamin C in collard greens. Broccoli is another vegetable high in vitamin C.

Yeast is better than sourdough. Phytate breakdown was signficantly more in sourdough bread than in yeasted bread.

 

Indigenous Nut Uses

The aborigines would express the oil from the nuts and use it as a binder with ochres and clay for face and body painting. This was a method of preserving clan symbols of the dreaming. The oil was also used neat for skin rejuvenation and as a carrier where it was mixed with other plant extracts to treat ailments.
It was believed the nuts contained a stimulant which aided breast milk production. Lactating mothers would eat the bitter nuts that had commenced to germinate.

 

Problems with White Flour

White flour goes quickly rancid. Grains should be fresh ground before being fermented.

Bleach was apparently prohibited by the US Supreme Court in 1918. Vitamin E is destroyed by bleach. Unbleached flour won’t have the bleach issue, but it isn’t slow milled, and will still likely go rancid quickly. Flour should be fresh ground and not bleached. It is okay to remove quite a bit of the bran (figures not available for ideal bran removal from wheat), if it is done just prior to fermentation.

 

Grains, Nuts, Seeds, and Beans Suggestions

 

Bread.

Best –sourdough rye bread with 25% or more of the bran removed. Soured for 16 or more hours with fresh stone ground grains that have been germinated. (no phytic acid, maximum nutrients)

Acceptable – sourdough rye with entire bran from fresh stone ground grains soured at least 16 hours. (small amounts of phytic acid)

Decent – unbleached wheat sourdough. Fresh stone ground grains, bran mostly or entirely removed, soured at least 16 hours. No malt, or added rising agents. (no phytic acid)

Passing, but may have consequences – whole wheat sourdough, fresh ground grains, 24 or more hours of fermentation. (contains phytic acid, but also will contain some usable phosphorous)

 

Avoid – unsoured breads (too many anti-nutrients, indigestible gluten, ect, as well as contains phytic acid)

Whole grain breads that are not soured. (very high in phytic acid)

Breads not made with freshly ground grains. (lacking wheat germ, many good vitamins possibly oxidized)

Sprouted grain breads. (still contain phytic acid, some brands add soy.)

Yeasted bread (yeast will not likely remove entire phytic acid content. If bread contains whole grains, this will add to the problem.)

 

Regularly consumed bread should be consumed with dairy. Milk, yogurt, or cheese. Make sure to have excellent food based vitamin D intake from liver or cod liver oil.

 

Rice

Best – home milled rice, remove 50-99% of bran, sour at a hot temperature (90 degrees F) at least 16 hours, preferably 24 hours. Having a starter would be ideal. (no phytic acid, maximum mineral absorption.)

 

Decent on occasion – white rice that is soaked and well cooked. (very low in phytic acid, but may be lacking some vitamins)

Decent to somewhat better? – brown rice soaked with 3 rd generation or more starter at 30 degrees Celsius (86 degrees F) from germinated rice and then soured into idili or other rice bread.

 

Avoid

Brown rice and foods containing brown rice that is not soured at least 16 hours at and not soaked with a highly active starter.

 

Nuts

Nut oils from nuts first roasted, then pressed with pressure would be ideal.

Soak nuts 18 hours, dehyrate at 80-90 degrees F. (still may contain phytates

 

questionable - nut butters from soaked nuts. (Will likely contain significant amounts of phytates, amount is unkown, but could be as high as 80%)

 

avoid.

Avoid nut butters that are not soaked.

Do not use nut flours for cooking unless nuts are soaked, and then soured. (high phytates)

Do not use coconut flour unless soaked. (high phytates)

Nuts potentially contain other plant toxins.

 

Seeds

Homemade seed oils seem to be ideal.

 

I could not advise eating any seeds at this time. Seeds are extremely high in phytic acid. They would require thorough processing to remove them.

 

Avoid

avoid consuming or snacking on raw seeds. Cacao is a seed. Do not eat raw cacao because it is extremely high in phytic acid and tannis (leeches calcium).

 

 

 

Conclusion

Phytic acid has mistakenly played apart in many healthy eaters diet. Whether it is careless use of nuts, or eating bran rich foods, or sprouted grain foods thinking they were healthy. Beyond grains and phytic acid, it is our attitude that supports us to be healthy. We cannot live on bread alone. But we will live better if we eliminate phytates from our food. Even though we have to fight through the jungle of modernization to get healthy food, it seems that many of our foods, if rightly prepared will keep us healthy.

 

I would like to do a follow up for this article. I would like your help. I know many of you out there have access to healthy grain preparation methods, can organize research or contribute to research or just plane want to help. Please e-mail me at phytates @ curetoothdecay dot com (replace dot with . and remove spaces) Please note this e-mail is not for random conversation, it is for working on creating a clear resources to share with people about phytates.

 

 

 

Recipes

Sourdough Egg Noodles Written by Katherine Czapp 2004-Jul-06 http://www.westonaprice.org/Sourdough-Egg-Noodles.html

Our Daily Bread, By Katherine Czapp with Garrick Ginzburg-Voskov

http://www.trit.us/foodfeatures/ourdailybread.html

 

Kishk

Kishk is a fermented product prepared from parboiled wheat and milk (Fig. 10). It is consumed in Egypt and in most Arabian countries (Morcos et al., 1973a). During the preparation of kishk, wheat grains are boiled until soft, dried, milled and sieved in order to remove the bran. Milk is separately soured in earthenware containers, concentrated and mixed with the moistened wheat flour thus prepared, resulting in the preparation of a paste called a hamma. The hamma is allowed to ferment for about 24 hrs, following which it is kneaded and two volumes of soured salted milk are added prior to dilution with water. Alternatively, milk is added to the hamma and fermentation is allowed to proceed for a further 24 hours. The mass is thoroughly mixed, formed into balls and dried.

(Rami’s note, probably would work well with kefir)

http://www.fao.org/docrep/x2184e/x2184e07.htm#pre

There is a table here to copy.

 

Idili – Dosas (with white rice or milled rice with rice starter - not brown rice)

 

Brown Rice Soaking With Starter

1. Soak brown rice in dechlorinated water for 24 hours at room temperature without changing the water. Reserve 10% of the soaking liquid (should keep for a long time in the fridge). Cook the rice in the other 90% soaking liquid and eat. This will break down about 50% of the phytic acid.

2. The next time you make brown rice, use the same procedure as above with a fresh batch of dechlorinated water, but add that 10% soaking liquid from the last batch. This will break down about 65% of the phytic acid in 24 hours.

3. Repeat the cycle of fresh water soaking with the previous 10% reserve. The process will gradually improve until 96% or more of the phytic acid is degraded at 24 hours. The authors found that it took four rounds to get to 96%.

Stephan Guyenet

http://wholehealthsource.blogspot.com/2009/04/new-way-to-soak-brown-rice.html

 

(Use of phytase to improve the digestibility of alternative

feed ingredients by Amazon tambaqui, Colossoma

macropomum)

( ScienceAsia 34 (2008): 353360)

Degradation of phytate in soaked diets for pigs K. Johansen, D. Carlson, J. Hansen-Møller, Hanne-Damgaard Poulsen Department of Animal Health, Welfare and Nutrition, Danish Institute of Agricultural Sciences, Research Centre Foulum, Tjele, Denmark

Cereal Grains: Humanity's Double-Edged Sword Loren Cordain

Chapter 12, Rebuild From Depression.

Critical Reviews in Food Science and Nutrition, 35(6):495-508 (1995)

(J. Physiol. (I949) I09, 488-533 547.593:6I2.751.I THE RICKETS-PRODUCING AND ANTI-CALCIFYING ACTION OF PHYTATE BY EDWARD MELLANBY)

CCVIII. PHYTIC ACID AND THE RICKETSPRODUCING

ACTION OF CEREALS BY DOUGLAS CREESE HARRISON AD EDWARD MELLANBY From the Field Laboratory, University of Sheffield, and the Department of Biochemistry, Queen's University, Belfast (Received 11 August 1939)

(J. Physiol. (I949) I09, 488-533 547.593:6I2.751.I

THE RICKETS-PRODUCING AND ANTI-CALCIFYING ACTION OF PHYTATE)

 

(Am_j)Clin_nutr. Baltimore, Md. : American Society for Clincial Nutrition. Jan 1989. v. 49 (1) p. 140-144 Iron absoprtion in man: ascrobic acid and dose-depended inhibition.)

Am J Clin Nutr 1988;47:270-4 Inhibitory effect of nuts on iron absorption

IBID

Phytase of Wheat F.G. PEERS, The Biochemical Journal Vol. 53, NO, 1 pp. 102-110, 1953

Phytic Acid - Simple Kitchen Techniques to Reduce your Food Phytates Amanda Rose, Ph.D. at the Rebuild website

(Natural Antinutritive Substances in Foodstuffs and Forages Iancu Gontzea and Paraschiva Sutzescu 1968.)

 

http://www.marciesalaskaweb.com/choctawFood.htm

 

Everyone Eats: Understanding food and culture Eugene Newton Anderson”

(Antinutritional content of developed weaning foods as affected by domestic processing. (Food-chem. Essex: Elsevier Applied Science Publishers. 1993. v. 47 (4) p. 333-336.)

(Food-chem. Oxford: Elsevier Science Limited. 1994. v. 50 (2) p. 147-151 Effects of processing methods on phytic acid level and some constituents in bambara groundnut and pigeon pea.)

(Food and Nutrition Bulletin, vol. 23, no. 3 (supplement) © 2002, The United Nations University Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya)

(Food-chem. Essex: Elsevier Applied Science Publishers. 1993. v. 47 (4) p. 333-336.)

(Lestienne, Besanc¸on et al., 2005; Lestienne,

Icard-Vernie`re et al., 2005; Lestienne, Mouquet-Rivier et al., 2005), and soaking of sorghum flour (80% extraction)

(Mahgoub & Elhag, 1998).

( Hotz, Gibson, & Temple, 2001 ). (Food Chemistry 110 (2008) 821–828)

(Journal of cereal science   ISSN 0733-5210   CODEN JCSCDA 

2008, vol. 48, n o2, pp. 471-476 [6 page(s) (article)] (1/2 p. Dephytinization of wheat bran by fermentation with bakers' yeast, incubation with barley malt flour and autoclaving at different pH levels)

Phytic Acid - Simple Kitchen Techniques to Reduce your Food Phytates Amanda Rose, Ph.D. at the Rebuild website - (McKenzie-Parnell and Davies 1986)

(El Molino Mills).

(J. Physiol. (1942) 101, 44-8 612.015.31 Mineral Metabolism of Healthy Adults on White and Brown Bread Dietaries)

SIMPLY SEEKING SUSTENANCE Lost & Found - Our Link with Traditional Food & Medicine, IN Cognito

THE DIRECT EFFECT OF MALNUTRITION ON TISSUE DEGENERATION

by Royal Lee Address to the Seattle Chapter of the American Academy of Applied Nutrition

November,.17 1949

 

http://www.williamrubel.com/artisanbread/examples/ryebread/rye-bread-from-france-pain-bouilli

http://www.littlestream.com/

( J. Agric. Food Chem., 2001, 49 (5), pp 2657–2662

DOI: 10.1021/jf001255z Publication Date (Web): May 4, 2001 Copyright © 2001 American Chemical Society )

Taylor, Edward, "Preliminary Studies on Caries ImmUnity in the Deaf Smith

County ( Texas) Area." Journal A.DoA.~ March~ 1942.

(Phytate reduction in oats during malting. J-Food-Sci-Off-Publ_Inst_Food_Technol. Chicago, Ill. : The insititue. July/Aug 1992. v. 57 (4) p. 994-997.)

(Distribution of Phosphorus and Phytate in Some Nigerian Varieties of Legumes and some Effects of Processing. A.D. Ologhobo and B. L. Fetuga, Volume 49 1984, Journal food science)

( Indigenous legume fermentation: effect on soem anti-nutrients and in-vitro digestibility of starch and protein Food-chem. Oxford: Elsevier Science Limited 1994. v. 50 (4) p. 403-406)

( Saponins, phytic acid, tannis and protesase inhibitors in quinoa. Food-chem. Essex: Elsevier Science Limited. 1993. v. 48 (2) p. 137-143

(J-sci-food-argric. Sussex, John Wiley & Sons Limited. Jluy 1996. v. 71 )3)

(Journal of Food Composition and Analysis 2, 69-78 (1989) Proximate Composition and Mineral and Phytate Contents of Legumes Grown in Sudan)

Food Phytates

http://www.gobeyondorganic.com/Monthly-Newsletters/rest-easy-turmeric-brew-successes-volume-iii-issue-i.html

 

Health Freedom Journal

Figures from: (J . Anal . At . Spectrom. , 2004, 19, 1330 – 1334)

(Inhibitory effect of nuts on iron absorption, The American Journal of Clinical Nutrition

AM J Clin Nutr 1988;47:270-4.) (J. Agric. Food Chem 1994, 42, 2204-2209)

Food Phytates Reddy.

 

Food Chemistry 110 (2008) 821–828 - Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice

http://www.nutritiondata.com/facts/cereal-grains-and-pasta/5744/2

 

(Am-J. Clin-Nutr. Baltimore, MD. : American Society for Clinical Nutrition. Jan 1991. V. 53 (1) p. 112-119. Calcium: effect of different amounts on nonheme- and heme-iron absorption in humans.)

(Food-chem. Oxford:Elsevier Science Limited. 1994. V. (4) p. 419-422. Effect of fermenation on CL extractability of minerals from rice-defatted soy flour blend.

 

( Eur-J-Clin_nutr. Basingstoke: The Macmillan Press Ltd. July 1990. v. 44 (7) p. 489-497. Rice and iron absoprtion in man.)

 

( J. Agric. Food Chem., 2001, 49 (5), pp 2657–2662

DOI: 10.1021/jf001255z Publication Date (Web): May 4, 2001 Copyright © 2001 American Chemical Society )

THE DIRECT EFFECT OF MALNUTRITION ON TISSUE DEGENERATION

by Royal Lee Address to the Seattle Chapter of the American Academy of Applied Nutrition

November,.17 1949

Other people have learned the secrets to stopping cavities with the published book Cure Tooth Decay

Cure Tooth Decay

 

I had several painful cavities

Buy it Now Button

Teach Parents How to Raise Healthy Children

You and Weston Price Saved My Teeth

Remineralize Cavities Awesome

What is wrong with our modern diet, cavity smaller

Cure Tooth Decay Awards

Book Cure Tooth Decay Link